Computer Science Master - AI -
Machine Learning Algorithms
Courses
Regression and classification problems
Associated exercises in [1]
- Ex 1, 4 and 5 Chap 3.7
- Ex 1 and 2 Chap 4.7
PAC learning theory
Associated exercises in [5]
- Ex 1, 2 and 3, Chap 3.5
- Ex 2 and 3, Chapt 6.8
Gradient descent
Computer class in Python, link to the jupyter notebook is given in class.
Convex problem
Associated exercises in [3]
- Ex 2.1, 2.8, 2.12 in Chap 2
- Ex 3.1, 3.17 in Chap 3
Evaluation
- 75% paper exam
- 25% homework (computer program)
Suggested Readings
- [1] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning . New York: Springer.
- [2] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.
- [3] Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.
- [4] Cornuéjols, A., & Miclet, L. (2011). Apprentissage artificiel: concepts et algorithmes. Editions Eyrolles.
- [5] Shalev-Shwartz, S. and Ben-David, S. (2014), Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press.
Further Readings
- [6] Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction. New York: Springer.
- [7] Bertsekas, D. (2009). Convex optimization theory(Vol. 1). Athena Scientific.
- [8] Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and Trends in Machine Learning, 8(3-4), 231-357.